Generative models have been widely applied to solve extractive tasks, where parts of the input is extracted to form the desired output, and achieved significant success. For example, in extractive question answering (QA), generative models have constantly yielded state-of-the-art results. In this work, we identify the issue of tokenization inconsistency that is commonly neglected in training these models. This issue damages the extractive nature of these tasks after the input and output are tokenized inconsistently by the tokenizer, and thus leads to performance drop as well as hallucination. We propose a simple yet effective fix to this issue and conduct a case study on extractive QA. We show that, with consistent tokenization, the model performs better in both in-domain and out-of-domain datasets, with a notable average of +1.7 F2 gain when a BART model is trained on SQuAD and evaluated on 8 QA datasets. Further, the model converges faster, and becomes less likely to generate out-of-context answers. With these findings, we would like to call for more attention on how tokenization should be done when solving extractive tasks and recommend applying consistent tokenization during training.
translated by 谷歌翻译
There has been great progress in unifying various table-to-text tasks using a single encoder-decoder model trained via multi-task learning (Xie et al., 2022). However, existing methods typically encode task information with a simple dataset name as a prefix to the encoder. This not only limits the effectiveness of multi-task learning, but also hinders the model's ability to generalize to new domains or tasks that were not seen during training, which is crucial for real-world applications. In this paper, we propose compositional task configurations, a set of prompts prepended to the encoder to improve cross-task generalization of unified models. We design the task configurations to explicitly specify the task type, as well as its input and output types. We show that this not only allows the model to better learn shared knowledge across different tasks at training, but also allows us to control the model by composing new configurations that apply novel input-output combinations in a zero-shot manner. We demonstrate via experiments over ten table-to-text tasks that our method outperforms the UnifiedSKG baseline by noticeable margins in both in-domain and zero-shot settings, with average improvements of +0.5 and +12.6 from using a T5-large backbone, respectively.
translated by 谷歌翻译
Recent works on Lottery Ticket Hypothesis have shown that pre-trained language models (PLMs) contain smaller matching subnetworks(winning tickets) which are capable of reaching accuracy comparable to the original models. However, these tickets are proved to be notrobust to adversarial examples, and even worse than their PLM counterparts. To address this problem, we propose a novel method based on learning binary weight masks to identify robust tickets hidden in the original PLMs. Since the loss is not differentiable for the binary mask, we assign the hard concrete distribution to the masks and encourage their sparsity using a smoothing approximation of L0 regularization.Furthermore, we design an adversarial loss objective to guide the search for robust tickets and ensure that the tickets perform well bothin accuracy and robustness. Experimental results show the significant improvement of the proposed method over previous work on adversarial robustness evaluation.
translated by 谷歌翻译
深度神经网络(DNN)容易受到对抗性示例的影响,其中DNN由于含有不可察觉的扰动而被误导为虚假输出。对抗性训练是一种可靠有效的防御方法,可能会大大减少神经网络的脆弱性,并成为强大学习的事实上的标准。尽管许多最近的作品实践了以数据为中心的理念,例如如何生成更好的对抗性示例或使用生成模型来产生额外的培训数据,但我们回顾了模型本身,并从深度特征分布的角度重新审视对抗性的鲁棒性有见地的互补性。在本文中,我们建议分支正交性对抗训练(BORT)获得最先进的性能,仅使用原始数据集用于对抗训练。为了练习我们整合多个正交解决方案空间的设计思想,我们利用一个简单明了的多分支神经网络,可消除对抗性攻击而不会增加推理时间。我们启发提出相应的损耗函数,分支 - 正交丢失,以使多支出模型正交的每个溶液空间。我们分别在CIFAR-10,CIFAR-100和SVHN上评估了我们的方法,分别针对\ ell _ {\ infty}的规范触发尺寸\ epsilon = 8/255。进行了详尽的实验,以表明我们的方法超出了所有最新方法,而无需任何技巧。与所有不使用其他数据进行培训的方法相比,我们的模型在CIFAR-10和CIFAR-100上实现了67.3%和41.5%的鲁棒精度(在最先进的ART上提高了 +7.23%和 +9.07% )。我们还使用比我们的训练组胜过比我们的方法的表现要大得多。我们所有的模型和代码均可在https://github.com/huangd1999/bort上在线获得。
translated by 谷歌翻译
现有视频超分辨率(VSR)算法的成功主要是从相邻框架中利用时间信息。但是,这些方法都没有讨论带有固定物体和背景的贴片中时间冗余的影响,并且通常使用相邻框架中的所有信息而没有任何歧视。在本文中,我们观察到时间冗余将对信息传播产生不利影响,这限制了最现有的VSR方法的性能。在这一观察结果的推动下,我们旨在通过以优化的方式处理时间冗余贴片来改善现有的VSR算法。我们开发了两种简单但有效的插件方法,以提高广泛使用的公共视频中现有的本地和非本地传播算法的性能。为了更全面地评估现有VSR算法的鲁棒性和性能,我们还收集了一个新数据集,其中包含各种公共视频作为测试集。广泛的评估表明,所提出的方法可以显着提高野生场景中收集的视频的现有VSR方法的性能,同时保持其在现有常用数据集上的性能。该代码可在https://github.com/hyhsimon/boosted-vsr上找到。
translated by 谷歌翻译
对于许多在线平台(例如,视频共享网站,电子商务系统),学习动态用户的偏好已成为越来越重要的组成部分,以提出顺序建议。先前的工作已经做出了许多努力,以基于各种体系结构(例如,经常性的神经网络和自我注意机制)对用户交互序列进行建模项目项目过渡。最近出现的图形神经网络还用作有用的骨干模型,可在顺序推荐方案中捕获项目依赖性。尽管它们有效,但现有的方法却远远集中在具有单一相互作用类型的项目序列表示上,因此仅限于捕获用户和项目之间的动态异质关系结构(例如,页面视图,添加最佳选择,购买,购买)。为了应对这一挑战,我们设计了多行为超毛力增强的变压器框架(MBHT),以捕获短期和长期跨型行为依赖性。具体而言,多尺度变压器配备了低级别的自我注意力,可从细粒度和粗粒水平的共同编码行为感知的顺序模式。此外,我们将全局多行为依赖性纳入HyperGraph神经体系结构中,以自定义的方式捕获层次长期项目相关性。实验结果证明了我们MBHT在不同环境中的各种最新推荐解决方案的优势。进一步的消融研究证明了我们的模型设计和新MBHT框架的好处的有效性。我们的实施代码在以下网址发布:https://github.com/yuh-yang/mbht-kdd22。
translated by 谷歌翻译
当测试图像提出看不见的分布时,深层分割模型通常会面临故障风险。改善模型鲁棒性针对这些风险的鲁棒性对于深层模型的大规模临床应用至关重要。在这项研究中,受到人类学习周期的启发,我们提出了一个新颖的在线反思学习框架(REFSEG),以改善细分鲁棒性。基于启用概念的反射概念,我们的refseg首先驱动了深层模型以采取行动以获得语义分割。然后,refseg触发模型以反映自身。因为使深层模型在测试过程中意识到他们的细分失败是具有挑战性的,所以RefSeg合成了从语义面具中综合的逼真的代理图像,以帮助深层模型构建直观有效的反射。该代理翻译并强调了分割缺陷。通过最大程度地提高原始输入和代理之间的结构相似性,可以改善分割鲁棒性的反射循环。 REFSEG在测试阶段运行,并且是分割模型的一般性。通过公共心脏MR数据集和两个内部大型超声数据集对三个医疗图像细分任务进行了广泛的验证,这表明我们的refseg显着提高了模型的鲁棒性,并报告了与强大竞争对手有关的最先进的表现。
translated by 谷歌翻译
标准平面(SP)定位对于常规临床超声(US)诊断至关重要。与2D US相比,3D US可以一次扫描获得多个视图平面,并通过添加冠状平面提供完整的解剖结构。但是,由于方向的可变性和巨大的搜索空间,在3D US中手动导航SPS是费力的和有偏见的。在这项研究中,我们介绍了3D US中自动SP本地化的新型增强学习(RL)框架。我们的贡献是三倍。首先,我们将3D中的SP定位作为RL中的基于切线的问题,以重组动作空间并大大降低搜索空间。其次,我们设计了一种辅助任务学习策略,以增强模型识别跨越平面搜索中非SPS和SP的微妙差异的能力。最后,我们通过同时利用空间和解剖学信息来提出空间 - 动态奖励,以有效地指导学习轨迹。我们探讨了我们方法在子宫和胎儿脑数据集上定位四个SP的功效。实验表明,我们的方法达到了较高的定位精度以及稳健的性能。
translated by 谷歌翻译
超声(US)广泛用于实时成像,无辐射和便携性的优势。在临床实践中,分析和诊断通常依赖于美国序列,而不是单个图像来获得动态的解剖信息。对于新手来说,这是一项挑战,因为使用患者的足够视频进行练习是临床上不可行的。在本文中,我们提出了一个新颖的框架,以综合高保真美国视频。具体而言,合成视频是通过基于给定驾驶视频的动作来动画源内容图像来生成的。我们的亮点是三倍。首先,利用自我监督学习的优势,我们提出的系统以弱监督的方式进行了培训,以进行关键点检测。然后,这些关键点为处理美国视频中的复杂动态动作提供了重要信息。其次,我们使用双重解码器将内容和纹理学习解除,以有效地减少模型学习难度。最后,我们采用了对抗性训练策略,并采用了GAN损失,以进一步改善生成的视频的清晰度,从而缩小了真实和合成视频之间的差距。我们在具有高动态运动的大型内部骨盆数据集上验证我们的方法。广泛的评估指标和用户研究证明了我们提出的方法的有效性。
translated by 谷歌翻译
超声检查是乳腺癌诊断的重要常规检查,这是由于其无创,无辐射和低成本的特性。但是,由于其固有的局限性,乳腺癌的诊断准确性仍然受到限制。如果我们可以通过乳房超声图像(BUS)精确诊断乳腺癌,那将是一个巨大的成功。已经提出了许多基于学习的计算机辅助诊断方法来实现乳腺癌诊断/病变分类。但是,其中大多数需要预定的ROI,然后对ROI内的病变进行分类。常规的分类骨架,例如VGG16和RESNET50,可以在没有ROI要求的情况下获得有希望的分类结果。但是这些模型缺乏解释性,因此限制了它们在临床实践中的使用。在这项研究中,我们提出了一种具有可解释特征表示的超声图像中乳腺癌诊断的新型无ROI模型。我们利用解剖学的先验知识,即恶性肿瘤和良性肿瘤在不同的组织层之间具有不同的空间关系,并提出了悬停转换器来提出这种先验知识。提出的悬停式跨界块水平和垂直地提取层间和层内空间信息。我们进行并释放一个开放的数据集GDPH&SYSUCC,以用于公共汽车中的乳腺癌诊断。通过与四个基于CNN的模型和两个Vision Transformer模型进行比较,通过五倍的交叉验证来评估所提出的模型。它通过最佳模型可解释性实现最新的分类性能。同时,我们提出的模型在仅给出一张公交图像时,在乳腺癌诊断方面优于两名高级超声检查员。
translated by 谷歌翻译